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Common Periodic Behavior 
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The periodic behavior of N-mode truncations of the Navier-Stokes equations 
on a two-dimensional torus is studied for N= 44, 60, 80, and 98. Significant 
common features are found, particularly for not too high Reynolds numbers. In 
all models periodicity ends, giving rise, though at quite different parameter 
values, to quasiperiodicity. 
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1. I N T R O D U C T I O N  

A pioneering work by Lorenz (1) of 1963, concerning the Saltzman 
equations for convection between plates, represented the first at tempt to 
study the partial differential equations that govern a fluid flow through 
truncation of a suitable Fourier expansion to a finite number  of com- 
ponents ("modes"). Only 15 years later, and as a consequence of the rapid 
development of computers, other authors followed Lorentz in this line of 
research. Curry (2) investigated a 14-extension of the Lorentz model. 
Yahata  (3) considered truncations up  to 56 modes for the Taylor-Couet te  
flow between concentric cylinders. Da  Costa et al. (4~ proposed a simplified 
model for the convection of a fluid in a layer with a dissolved solute. 
Boldrighini and Franceschini (5) began a series of detailed studies, strongly 
based on bifurcation theory, of truncations of the two-dimensional 
Navier-Stokes equations with periodic boundary conditions. Spectral 
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techniques were used by Orszag and co-workers to simulate, among other 
things, the three-dimensional Navier-Stokes equations associated with the 
plane Poiseuille and Couette flows (6) and the Taylor-Green vortex. (7) 
Maschke and Saramito (8) studied the transition to turbulence of a plasma 
confined in a magnetic field. 

An extensive study of the Navier-Stokes equations on a two-dimen- 
sional torus was performed starting from Ref. 5. Several truncations were 
investigated in deep detail, from a minimal truncation with four modes (9) 
to a large one with 98 modesJ 1~ While for truncations up to 18 modes (11) 
the investigation concerned the whole sequence of successive bifurcations 
leading from a stationary regime to a chaotic one, for larger truncations it 
was confined to the stationary solutions only. 

Two motivations were at the basis of this systematic study of trun- 
cated Navier-Stokes equations. The first motivation consisted in answering 
the following question: Is it really possible to study the Navier-Stokes 
equations through truncations? In other words: Is it possible to attain 
a qualitative limit behavior as the number N of modes used for the 
truncation is increased and with N not too large so that the numerical 
investigation can be carried out with acceptable computational costs? The 
second motivation lay in the assumption that truncated models could be 
very interesting as dynamical systems because they provide detailed 
descriptions of phenomena which qualitatively are the same as the ones 
often occurring in real world. 

The results achieved from truncated Navier-Stokes equations widely 
justify these studies in the framework of dynamical systems. On the 
contrary, the answer to the question about the limit behavior is still partial. 
On one hand, in fact, if N is small (say, to fix ideas, N ~  20), and the 
modes are arbitrarily chosen, even the addition or change of one mode can 
radically alter the phenomenology (see, for instance, Franceschini(12)). On 
the other hand, if the modes taken into account are all the ones included in 
a ball (which seems the most natural way of truncating), the first three 
nontrivial truncations, which correspond to N-- 12, 14, and 18, show some 
common global features, but rather different details. ~ However, if one 
restricts the study to the fixed points only and considers larger and larger 
balls up to the one with 98 modes, (1~ one sees that from N = 4 4  on the 
behavior does not undergo any qualitative change and, in addition, the 
critical parameter values at which the bifurcations take place tend to 
stabilize as N approaches 98. 

We also note that interesting theoretical results, providing an estimate 
to the minimal number of modes necessary to obtain a correct approximate 
solution of the two-dimensional Navier-Stokes equations, were obtained 
by Foias e t  al. ~13) Such estimates, however, are normally largely in excess 
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and, as seen by Maschke and Saramito (14) for the Rayleigh-Benard convec- 
tion, do not appear very useful in view of actual applications. 

With this paper we intend to give another contribution to answer the 
previous question. We consider in fact four of the truncations already 
considered in Ref. 10, the ones corresponding to N = 44, 60, 80, and 98, and 
thanks to a supercomputer CRAY X-MP, we investigate in detail the 
behavior of the periodic orbits present in the models. This allows us to 
show several common features, in some cases very striking, so that it makes 
sense to speak about a good limit behavior of the periodic orbits, at least 
for the Reynolds number R not too large. 

In regard to the techniques we use in the numerical investigation, 
besides the fundamental support of bifurcation theory (see, for instance, 
Iooss and Joseph(15)), our main tool is a quasi-Newton method, Broyden's 
method, to identify and follow periodic orbits. A special Appendix is 
devoted to the discussion of the numerical methods and of the arrange- 
ments adopted to optimize the programming on the vector computer 
CRAY X-MP we used for the computations. We remark that the setting up 
of our programs, in view of optimizing the performance of the computer, 
required a lot work, which prompted us to discuss, though briefly, the 
argument. 

The paper is organized as follows. In Section 2 we introduce the 
truncated models and describe their properties. In Section 3 we report the 
behavior of the stationary solutions. In Section 4, which contains the 
original results of this work, we illustrate in detail the periodic orbit 
behavior, with the help of pictures for better clearness. Finally, in Section 5 
we make some conclusive remarks. 

2. T H E  T R U N C A T E D  E Q U A T I O N S  

Let L be a finite set of 2N wave vectors k with integer components 
(kx, ky) such that if k e L ,  also - k ~ L .  An N-mode truncation of the 
Navier-Stokes equations for an incompressible fluid on a two-dimensional 
torus is defined as 

k l+k2+k=O 
kl,k2~L 

~ / - k  = - - ~ k ,  k e L  

(k~ 'k2) (k  ~ -k~)  

2 Ik~l Ik21 Ikl Yk,~k2+fk 
(1) 

where 7k is the component along k • = (ky, -kx) of the velocity field u, fk is 
the analogous component of the external periodic force f driving the fluid, 
and v is the viscosity. 
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System (1) consists of N ordinary differential equations in the complex 
unknowns yk(t), which implies 2N equations in real variables. We shall 
refer only to the k's placed in the half-space 

= {(x, y), x > 0 }  {(0, y), y > 0 }  

Then, for the sake of simplicity, we assume that the force f acts only on 
some mode k* and is independent of time. Under these hypotheses fk* can 
be taken real without losing generality. As a consequence, system (1) 
admits "particular" solutions in which each 7k(t) is either real or pure 
imaginary. To consider such a solution allows the study of a system of N 
rather than 2N equations. 

To proceed in agreement with the notations of previous works, let 
L (M) be the set of modes k such that Ik12= k~ + k 2 ~< M, ~vith M the sum of 
two squared integers, and let S (~t) be the truncation associated with L (M). 
As the "balls" of radius ~ become larger and larger, the truncations S (~) 
provide a sequence of models, each of them representing an enlargement of 
all the previous ones. Furthermore, let the k's be ordered for increasing 
modulus and, in the case of equality, for decreasing ky. Then, k~ = (0, 1), 
k2=(1,0),  k3=(1,1),  k 4 = ( 1 , - 1 ) ,  and so on. Now, after taking 
k*- -k  9 --(2, - l )  and letting R =f9,  we can assume v = 1 by rescaling the 
equations in length and time. Hence, the external parameter R can be 
referred to as the Reynolds number. 

In order or define the models to be studied, we need first to make 
precise the meaning of a "particular" solution and then to say which "par- 
ticular" solution we adopt. Under the above assumptions, there exist 
infinitely many hyperplanes, subspaces of the 2N-dimensional phase space, 
which are invariant with respect to the flow defined by system (1). These 
hyperplanes are symmetric due to a one-parameter group of angular 
symmetries. In fact, writing ~k(t) in the polar form 

];k(t) ---- pk(t) exp[iOk(t)] 

with both Ok(t) and 0k(t ) varying in ( - ~ ,  +m) ,  if e and fl are real 
parameters, e e [0, 27~), fle [0, 7r), then 

S~: {0k(t) ~ Ok(t) + (kx + 2ky)~)u ~L(M>~r/+ 

and 

Hp : { 0 k = ( k x  -~- 2ky) fl + (1 - kx - ky)Tr/2 } u ~/~cM~ ~/l+ 

represent a one-parameter group of symmetries and a linear continuum of 
stationary solutions for {0u(t) }u ~ L(M~ C~ //+ respectively. A "particular" 
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solution corresponds to the hyperplane Ho or, equivalently, to H~/2. We 
shall study the one associated with H~/2, which means confining the choice 
of the initial conditions for (1) to the points of that hyperplane. 

The adoption of a particular solution allows us to handle a reduced 
system of N equations in real variables xk(t) ,  for k eL(M)c~ H +. This 
system is invariant with respect to the symmetry 

T: {Xk-'~{--1)kXXk}k~L(M, caH+ 

In addition, there exists a pseudosymmetry, 

v: {xk--+ (--1)kx/2+k)Xk}u~L'M~+ 

which works when all the variables xk relative to k's with odd kx are 
always null. While the knowledge of T is essential to an understanding of 
the whole behavior of our models, that of r is necessary, as we shall see 
later, only to an understanding of the bifurcation diagram of the fixed 
points. 

Here we consider the models S (26~, S ~37), S ~5~ and 8 (64), which corre- 
spond to N =  44, 60, 80, and 98, respectively. To give an idea about the 
dimension of the systems we are dealing with, we note that while S (26) 
consists of about 1000 nonlinear terms, 8 (64) has more than 5200 of them. 
We recall that a complete study of S (8~, S/9), and S (1~ i.e., the first three 
nontrivial truncations, has been performed in Ref. 11, while the subsequent 
models, up to S (64), have been investigated in Ref. 10, but only with regard 
to the stationary solutions. The reader is referred to these references and to 
Ref. 16 for more details on the arguments of this section. 

3. T H E  S T A T I O N A R Y  S O L U T I O N S  

Three different sets of fixed points are present in the systems S ~M~. To 
distinguish them, we shall make use of the three letters P, Q, and O. While 
the points P and Q were studied in Ref. 10, the points O are discovered and 
then investigated here. In contrast to the first two families of points, which 
exist in all the S (M), the O family is found only for M~> 18. 

The fixed-point behavior, which is qualitatively the same in all the 
models S (M) for M>~26 (that is why we consider S (26~ and larger trun- 
cations), is summarized in Fig. 1. Let us illustrate such behavior, a family 
of points at a time. 

Points  P. The only fixed point present for every value of R is Po, 
which has all the components zero except for x9, the component associated 
with the mode excited by the external force. Po loses stability at R1 because 

822/50/5-6-3 
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Fig. 1. Bifurcation diagram of the fixed points for the truncations S (M) for M>~26. Full 
circles represent stable fixed points, empty circles unstable ones, and ellipses stable periodic 
orbits. 

of a real eigenvalue of the Jacobian of S (M), which becomes positive. The 
bifurcation causes a pair of new points PT, ?-- -+, to arise from P0, which 
are stable and mutual images under the symmetry T. The P~, which have 
coordinates zero except for those relative to k's with the difference (kx- ky) 
a multiple of three, keep stability up to R 6 when a pair of complex 
conjugate eigenvalues crosses the imaginary axis from left to right. A direct 
Hopf bifurcation takes place and two stable T-symmetric periodic orbits 
H(PJ are generated from the Pr. 

Points O. Two points (Q~, Q*) of fixed points, 6 = +,  appear at R2 
in consequence of a saddle-node bifurcation. The points Qa and Q~', the 
former stable and the latter unstable, have coordinates xk which are zero 
corresponding to k's with odd kx. The pseudosymmetry ~ holds and the Q~ 
are changed into each other under application of z, as well as the Q*. 
However, they undergo different behavior. Obviously, we are interested in 
that of the stable points. 
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Q + becomes unstable at R 4 due to a direct Hopf bifurcation. We call 
H(Q+) the stable T-invariant periodic orbit that originates from Q+. 

On the other hand, the behavior of Q_ is analogous to that of Po- In 
fact, first Q_ bifurcates at R 5 into a pair of stable T-symmetric points 
Q-s, 7 = ---, then these lose stability at R8 because of another direct Hopf 
bifurcation. Let H(Q.~) be the two stable T-symmetric periodic orbits 
appearing from the Q_7. 

Points O. Two extra pairs (O~, O*) of fixed points, 7 = -+, O~ stable 
and O* unstable, arise via a saddle-node bifurcation at R3. The O~ (as well 
as the O*) are T-symmetric, so that they behave in the same way and 
analogously to Q+. Each O~, in fact, becomes unstable due to a further 
direct Hopf bifurcation that occurs at R 7 and gives rise to a stable periodic 
orbit H(O./). 

Table I reports the numerical values of the bifurcation points Re, 
i=  1,..., 8, which describe the behavior of the stationary solutions in the 
models considered here. Except for R3 and R7,  they are taken (and 
reordered) from the analogous table of Ref. 10. 

4. THE PERIODIC S O L U T I O N S  

Consider then the periodic solutions of S (26), S (37), S (50), and S (64). As 
we have just seen, they exhibit four distinct Hopf bifurcations, which lead 
successively to the appearance of the periodic orbits H(Q+), H(P~), H(O~), 
and H(Q_y). In addition, we discovered, through direct integration of the 
equations, that an extra periodic orbit K is present in all four models. We 
shall describe separately the behavior of each of these orbits, excluding 
only H(Q+). The exclusion is due to a rather large period (and then to 
high computational costs) on one hand, and to an apparently small basin 
of attraction (and then to scant importance for the dynamics) on the other. 

Orbits H(P~). The behavior of these orbits in the four models is 
exactly the same: they remain stable until they disappear via a saddle-node 

Table I 

M N Rl R2 R3 R~ R5 R6 R7 R8 

26 44 19.78 31.71 48.76 50.01 57.18 64.28 78.38 87.79 
37 60 19.78 31.53 48.23 49.23 57.23 65.49 82.82 88.21 
50 80 19.78 31.58 48.49 49.30 58.86 65.31 82.02 87.37 
64 98 19.77 31.58 48.46 49.45 58.62 65.37 81.87 87.96 



886 Franceschini, Giberti, and Nicolini 

bifurcation. The approximated critical values of the Reynolds number R for 
which the bifurcation occurs in S (26), S (37), S (5~ and S ~64) are 75.97, 82.79, 
78.84, and 80.16, respectively. In all cases we verified the existence of an 
unstable periodic orbit in a neighborhood of H (PT), tending to collapse 
onto it as R approaches the bifurcation point. 

Orbits H(O~). These periodic orbits behave identically only in the 
three largest systems. Let us describe such behavior, omitting for the 
moment what happens in S (26). Each H(O~) becomes unstable due to a 
period-doubling bifurcation, which causes a stable periodic orbit with 
double period to arise. By following the bifurcated orbit, we could verify 
that it also undergoes a bifurcation of the same kind. It is reasonable 
to hypothesize that the sequence of bifurcations is actually infinite. 
Concerning the numerical values of the parameter R at the critical points, 
we found that the first doubling occurs at R ~ 97.06 for M = 37, R ~ 91.45 
for M =  50, and R-~ 91.30 for M =  64, while the second doublings take 
place at R--- 106.25, R ~-98.23, and R -  98.41, respectively. 

As for the system S (z6), also here H(O~) loses stability because of a real 
eigenvalue of the Jacobian of the Poinear6 map leaving the unit circle 
through - 1 .  In this case, however, no stable periodic orbit with double 
period seems to be present after the bifurcation has occurred. 

Orbits K. While the other periodic orbits arise from fixed points via 
Hopf bifurcation, and then they represent a natural continuation of already 
known situations, the orbits K can be found only by integrating the 
equations S (M) with randomly chosen initial data and for proper values of 
the Reynolds number R. For R = 110, for instance, an orbit K, invariant 
under application of the symmetry T, exists in all four models (see Fig. 2) 
and is easy to find. Let us illustrate its behavior starting from the lowest 
truncation. 

In S (26) the orbit K is originated by a a saddle-node bifurcation 
occurring at R ~-91.61. As R is increased, K loses stability at R-~ 128.14 
because a real eigenvalue of the Jacobian of the Poincar6 map crosses the 
unit circle through + 1. Several attempts to verify a direct symmetry- 
breaking bifurcation, i.e., the presence of two stable T-symmetric orbits KI 
and K 2 in a neighborhood of K just after the bifurcation has occurred, were 
useless. Perhaps the bifurcation is subcritical. 

Concerning the system S ~3v), K arises again in consequence of a 
saddle-node bifurcation taking place at R ~- 98.45. Now, however, it is easy 
to check that a direct symmetry-breaking bifurcation occurs as the 
Reynolds number R is increased toward R ~- 122.61. The bifurcated orbits 
K 1 and K2, stable and symmetrically placed with respect to K, become 
unstable at R - 1 2 8 . 2 2  due to a period-doubling bifurcation. In turn, the 
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Fig. 2. 

I X1 I I X1 I 
M=37 M=64 

! 

-5.4 9.7 -5.4 9.7 

The (xl, x2) projection of the periodic orbit K for R = l l 0  and M=26,37,  50, 
and 64. 

stable doubled orbits originating from K~ and K 2 undergo a bifurcation of 
the same kind at R -~ 128.95. We hypothesize a sequence of infinitely many 
doublings.. 

Finally, consider the behavior of K in S (5~ and 3 (64), where it turns 
out to be the same. As R is increased, the phenomenology repeats exactly 
that in S(37( In fact, first K undergoes a symmetry-breaking bifurcation, 
then the bifurcated orbits K 1 and /<2 give rise to a sequence, presumably 
infinite, of period doublings. The approximate critical values of R 
associated with the symmetry breaking and with two doublings are respec- 
tively 126.13, 128.03, and 128.26 for S (s~ and 120.14, 124.87, and 125.11 for 
S (64). On the other hand, following K as R is decreased, instead of finding a 
saddle-node bifurcation as for S (26) and S (37), one finds a symmetry 
breaking followed by a period doubling. In other words, now the behavior 
of K in both directions of the parameter R is the same. The symmetry 
breaking and the first doubling occur at R---90.605 and R "~ 90.527 in the 
case of S (5~ and R - 91.782 and R ~ 91.712 in the case of S (64). 

Figure 2 and further analogous pictures show a very striking similarity 
among the orbits K in the four truncations we are considering. This 
provides evidence of a good stabilization, also from a quantitative point of 
view, of the periodic behavior associated with these orbits. 

Orbits H ( O  ~). We left the description of these periodic orbits last 
because they are just the ones that disappear last. In contrast to the 
previous orbits, the H(Q_~) are present in a quite wide range of the 
parameter R. This range is sensibly different from a truncation to another. 



888 Franceschini, Giberti, and Nicolini 

In spite of this and in spite of different bifurcations, all the H(Q _~) become 
unstable, giving rise to an attracting torus. This allows us to state that, 
from a qualitative point of view, the behavior of the H(Q_r) is substan- 
tially the same in the four models we are dealing with. 

As far as  S (26) and S (37) a re  concerned, each H(Q_~) keeps stability 
until a pair of complex conjugate eigenvalues of the Jacobian of the 
Poincar6 map, at R ~- 251.98 and R ~ 561.54 respectively, escapes from the 
unit circle. By making a Poincar6 section of the flow for a value of R a little 
far from the bifurcation point, it is easy to verify that in both cases a two- 
dimensional torus has appeared. 

Coming to the behavior of H(Q_~) in S (5~ it turns out to be a little 
involved. A period-doubling bifurcation takes place at R "-~ 179.79, making 
H(Q_~) unstable and generating a stable orbit with double period. This 
new orbit persists up to R ~- 301.59 and in this wide parameter range seems 
to be the only attractor present. The double orbit disappears by collapsing 
again onto H(Q_~), so returning stability to it. This is a direct period- 
doubling bifurcation taking place for reverse R. The story of the life of 
H(Q ~) goes to an end because of a saddle-node bifurcation occurring at 
R=R" 2--303.91, where it collapses, disappearing with a neighboring 
unstable orbit. This orbit was born a little before, via another saddle-node 
bifurcation at R = R ' - 3 0 2 . 4 4 ,  together with a stable orbit very similar in 
shape to H(Q_~). This stable orbit coexists with H(Q_~) in the interval 
(R', R") and in practice takes the place of H(Q_~,) for R>R". For  this 
reason we refer to this new orbit still as H(Q ~). Then the story continues 
and for a long time. In fact the orbit remains stable up to R ~-540.20, 

ti=26' M=SO' 

I X1 I I l l  X 1 I 
M = 3 Y  M = 6 4  

-b.6 -ll'.8 -b.~ -11'.8 
The (xi, x2) projection of the periodic orbit H(Q_~) for R = 170 and M =  26, 37, 50, 

and 64. 
Fig. 3. 
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where we have numerical evidence of a bifurcation into an attracting two- 
dimensional torus. 

Finally, consider what happens to the orbit H(Q_~) in the system 
S (64). While no period doubling occurs, the previous phenomenology 
associated with a couple of successive saddle-node bifurcations is present. 
In fact, first at R = R' -~ 420.4 a pair of stable-unstable new periodic orbits 
arises with shape analogous to H(Q ~), then the unstable orbit collapse 
onto H(Q ./), disappearing with it at R = R" ~ 422.0. The remaining orbit, 
which also in this case is regarded as H(Q_~), bifurcates into an attracting 
torus at R -~ 432.8. 

Figures 3 and 4 represent two different plane projections of the four 
orbits H(Q_~) that correspond to R = 170. We note that, while the projec- 
tion onto the plane (xl, x2) shows four closed, very similar orbits, the 
projection onto (x9, xs) gives evidence of the fact that some differences still 
characterize the range of variableness of certain coordinates. 

To complete the description of the periodic solutions of the models 
S (~6~, S C~7), S (5~ and S C64), we provide two pictures which allow an overall 
glance at the behaviors we have been discussing. Figure 5 shows in fact a 
graphical summary relative to the R interval (50, 200), while Fig. 6 
concerns the R interval (200, 600), where only the orbits H(Q_~) are 
present. 

5. C O N C L U S I O N  

We have presented the results of a study of the periodic solutions 
exhibited by four truncations, to 44, 60, 80, and 98 modes respectively, of 

,,i 

d 

Pq 

'M=26 ' I 'M=50 

I 

I I X9 
M=64 

I ! I I 
4.3 8. I 4.3 8.1 

The same orbits as Fig. 3, projected onto the plane (xg, xs). Fig. 4. 
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Fig. 5. Scale drawing summarizing the phenomenology of the four systems S (26), S (3v, S (50), 
and S {64) for R varying in the interval (50, 200). Each of the four parts of the picture 
corresponds to one of the systems and represents, from the top downward, first K?, then P? 
and H(Pv), then O? and H(O,~), and, at bottom, Q_, Q y, and H(Q_~). Full circles indicate 
stable fixed points, continuous and broken lines represent stable and unstable periodic orbits, 
respectively. A bracket is the symbol for a saddle-node bifurcation. A "pitchfork" represents 
either a period doubling or.a symmetry breaking. 

the Navie r -S tokes  equat ions on a two-dimensional  torus. The study, inten- 
ded as the cont inuat ion of a previous work ~1~ concerning the stat ionary 
solutions, had the object of showing, also for the periodic solutions, some 
kind of limit behavior  as the number  of modes used in the t runcat ion is 
increased. Figure 5, with the addit ion of Figs. 2 4 ,  shows the a t ta inment  of 
the object, beyond  any expected extent, in a wide range of the Reynolds 
number  R. However,  as was to be expected, as R is increased, things get 
worse (see Fig. 6), and a larger number  of  modes appears to be necessary 
in order  to obtain  more  stabilized behavior. 

The present results show that  it is possible to analyze in deep detail 
systems of first-order ordinary  differential equat ions with up to 100 
equations. In this regard, however,  it must  be said that  this limit is not  easy 
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Fig. 6. Scale drawing representing the behavior of the periodic orbit H(Q_~), until it bifur- 
cates into an attracting torus, in the R interval (200, 600). The two saddle-node bifurcations 
that occur in this parameter range in S <5~ and S ~64) are not "visible" at the scale of the picture. 

to exceed in a substantial way. In fact, once we implemented the programs, 
we needed about 15 hr of computational time on the CRAY X-MP. 

To conclude, we remark that it would be interesting to investigate 
the systems S <M) further. Two questions, in particular, appear worth 
answering: (1) Do the sequences of period doublings give rise to a strange 
attractor persisting, and then coexising with stable periodic orbits, as M is 
increased? (2) How does the transition to chaos occur from two-dimen- 
sional tori? 

A P P E N D I X .  N U M E R I C A L  M E T H O D S  A N D  T E C H N I Q U E S  

In this Appendix we discuss the numerical problem of the investigation 
of a dissipative system of first-order nonlinear differential equations. As a 
matter of fact, this problem has already been treated more than once (see, 
for instance, Ref. 17). Here, however, we discuss, for the first time to our 
knowledge, two elements that we consider very important for the study of 
high-dimensional systems: the use of Broyden's method to find a periodic 
orbit and the techniques used to optimize the programming on the 
CRAY X-MP. We remark that they are not trivial arguments: the adoption 
of Broyden's method, implemented in an optimized way, can lead to 
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reduced computational time to at least one-third. We have tried to make 
this Appendix concise and at the same time self-explanatory. 

Consider an autonomous equation, depending on one external 
parameter #: 

~(t)=F(x(t);#), xe/~ N, p e R  (A.1) 

or, more extensively, 

SOl(t) = Fi(Xl(t), x2(t),..., Xu(t); #), i = 1 ..... N 

Let ~'(Xo, #) be its solution at time t when the initial condition is 
x ( 0 )  = Xo. 

A periodic (or closed) orbit 7(#) is a nonconstant solution of (A.I) with 
the property that there exists T, 0 <  T <  ~ ,  such that, if Xoe~(#), then 
*r(Xo, #) -= x o. The minimal T is the period of the orbit. A periodic orbit 7 
can be then determined by looking for a solution (x*, T) of the fixed-point 
equation 

G(x, t) = (W(x) - x = 0, x e R N (A.2) 

where #, which is fixed, is omitted. 
A method to solve (A.2) is the Newton method. Its application leads 

to the following iterative procedure: 

[W(x k, Zk) - - I J~k+F(~k(Xk) ) f k=X~- -dP~k(Xk) ,  k = 0 ,  1 . . . .  (A.3) 

where W(Xk, Zk) (abbreviated Wk) is the N •  matrix of the first 
derivatives of the flow ~ t  with respect to the spatial coordinates, I is 
the unit matrix, ek=Xk+l--Xk,  and 6k=Zk+l--Zk.  Given an initial 
approximation (x0, Zo), if the iteration (A.3) converges, the sequence {Xk} 
tends to some point x* of a periodic orbit and the sequence (zk} tends to 
its period (or a multiple of it). Then, once we know (or suppose) that a 
closed orbit y exists, if Xo is a point sufficiently close to 7 and c0 is a 
sufficiently good approximation of its period, we can determine the orbit 
precisely. 

For each k, (A.3) is a linear system of N equations in N + 1 unknowns, 
the N components e~ i) of ~k and 6k. In order to solve it we can impose that 
one of the e~ ~ say e~ h), is zero. This way we obtain a system of N equations 
in N unknowns, which can be rewritten in the simpler form 

Bk~k = --G(xk), k--0 ,  1 .... (A.4) 

where ~k= (e~l) ..... e~h-l), 6k, e~h+l)k ,..., e~N)) and B k coincides with Wk--I 
except for the hth column, which is given by F(~k(xk)).  If a is the 
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accuracy that we require for the closure of the orbit, the iteration is 
stopped when the condition Fl{k + I - - { ,  [[ < a is satisfied. 

Broyden's method (18) maintains the iteration (A.4), but with B~ 
obtained from Bk_ i in the following way: 

( v , -  B ,~ , )~ ,  ~ 
B,+I  = B , +  , k = 0 ,  1 .... (A.5) 

where Y k = G ( x g + l ,  Zk+I)--G(Xk, Zk) and ~[  is the transpose of ~k. We 
notice that, in contrast to Newton's method, Broyden's method requires 
one computation of Wk (to provide B0). After starting, only the com- 
putation of @**+l(X,+l) is needed to derive Bk+l from Bk, k = 0 ,  1 ..... 

For both Newton's and Broyden's methods the main problem, as far 
as cost is concerned, is associated with the computation of Wk. There are 
two different methods to perform it. 

Method  1. W~ is given by the solution at time zk of the N x N  
system of linear differential equations 

12V(t) = J(t) W(t), W(O) = I (A.6) 

where J(t) is the Jacobian of F computed at @'(x). We note that this 
system and system (A.1) must be integrated simultaneously. 

Method  2. The j th column of W, contains the derivative of ~ '  with 
respect to xj computed at (xk, *k). So W k can be approximated numerically 
by taking 

= (*~k(y~)--_~k(Xk)']  
(w,),j \ ~x /i  (A.7) 

where y~ has the same coordinates as xk except for the j th  one, which is 
incremented by a conveniently small amount Ax. In this case we note that 
the computation of N trajectories is necessary. 

There exists an alternative way of finding a periodic orbit. Such a 
method, which is based on the search of a fixed point of the Poincar6 map, 
is completely analogous to, though a little more expensive than, the one we 
have described. The interested reader is referred to Ref. 17, where also the 
way of taking advantage of a symmetry of the orbit is illustrated. 

Several arrangements, most of them introduced by Giberti, ~19) were 
adopted in order to optimize the programming by taking into account the 
characteristics of the vector computer CRAY X-MP. We discuss some of 
them. 
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The first considerations concern the computation of the function F(x) 
in (A.1). In our case F is given by the system (1), which has the following 
quadratic form: 

N N 

Fi=-aixi+ ~ ~.~ bukxjxk+ri, i= 1,..., N 
j = l k = l  

where the matrices B i -~ (b i jk ) j ,  k = 1,...,N have most elements zero. Hence, it is 
convenient to rewrite the above sum only considering the nonzero 
elements: 

Mi 
Fi=aixi+ ~ ci lx j i tXki ,  q - r i ,  i =  1,..., N (A.8) 

l --1 

with M~ < N for all i. 
This formulation of F, however, presents a considerable drawback: the 

x's are indirectly addressed, which prevents vectorizing. The best expedient 
to get out of this trouble is to construct a suitable vector y carrying the x~ 
in such a way that (A.8) becomes 

Mi 
Fi=aixi-k- ~ CilY2(Li+l)_ 1 Y2(Li+l) q-ri, i =  1,..., N (A.9) 

l = 1  

where Li = ~,=11 Mk. This final formulation of F is based on the existence 
of a library routine, the GATHER, which optimizes the construction of y, 
and on the fact that the larger N is, the more efficienf the routine is. 

The second argument we discuss pertains the computation of Wk. 
Consider first Method 1. In this case the main question concerns the com- 
putation of the function J(t) W(t) and, in particular, of J(t). The Jacobian 
J(t) at x(t) may be obtained in the following way after constructing four 
suitable matrices D1, D2, Yl(t), and Y2(t): 

(J(t))  U = (DI),j( r l ( t ) ) 0  + (Z)2),j(r2(t))~ 

D1 and D2 depend only on the coefficients ai and cit,, while Yl(t) and Y2(t) 
depend only on x(t). It is possible to express J(t) in this manner because in 
each scalar equation each x~ does not appear more than twice (which is, 
obviously, a peculiarity of the systems we are dealing with). We remark 
that such a split of J(t) into the sum of two "products" of matrices is very 
convenient from a vector point of view. We also notice that the construc- 
tion of the matrices Y1 and Y2 again implies overcoming a problem of 
indirect addressing, also in this case by calls, one for each matrix, to the 
routine GATHER. 

As far as Method 2 is concerned, the best technique consists in 
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integrating simultaneously the M =  N +  1 trajectories ~**(xk) and ~ ( y ; ) ,  
i =  1,..., N. The parallel computation can be easily performed through the 
equation J[ =G(X),  by N x  M scalar equations, obtained by considering 
the direct product (2~ of M copies of our Eq. (A.1), with the initial con- 
dition X = (xk, y~,..., y~V). In this case, however, it is more convenient to 
arrange the computation vertically rather than horizontally [as for (A.9)]. 

While Methods 1 and 2 are comparable as for precision, Method 1 is 
surely better than Method 2 from the cost point of view. In fact, for N = 44 
the ratio between the times needed for the same computation is about one- 
third. For larger N it also becomes much less. One might then ask why we 
introduced them both. The reason is that important remarks can be made 
on the grounds of what we just said. Method 2 is certainly to be preferred 
in the case of scalar computation: there is a factor of almost two in its 
favor. This is very instructive, because it shows how the ratio between the 
efficiencies of two different methods can radically change upon passing 
from a scalar computer to a vector one. 

Another consideration pertains to the technique we adopted to 
optimize the simultaneous computation of M trajectories. This technique 
is very useful also for computing several trajectories corresponding to 
different values of the parameter and different initial conditions. Such a 
case occurs, for instance, when we make a preliminary investigation of the 
model for a rough sketch of its behavior and we integrate the equations for 
some more or less large set of parameter values and randomly chosen 
initial data. 

As far as the Broyden method is concerned, a comment has to be 
made. The search of a periodic orbit with this method requires only one 
computation of Wk, in contrast to the Newton method, which implies as 
many computations as the iterations (four, on an average, to reach the 
precision we desire). Hence, Broyden's method, although it converges more 
slowly and each iteration involves the computation of q~k(x,), allows a 
considerable saving of computational time. To be precise, however, we 
must add a further consideration which partially reduces the advantages of 
the Broyden method. Once a periodic orbit 7 has been determined with a 
desired accuracy, we are interested in studying its stability properties. To 
do this, we need the Jacobian of the Poincar6 map associated with 7, which 
means the matrix W(T) computed along y. Obviously the sequence {Wk} 
converges to W(T), but {B~} does not. An extra computation is then 
necessary to obtain W(T). 

Finally, we use a fourth-order Rung~Kut t a  method, with a time step 
in most cases equal to 0.002, to integrate numerically Eq. (A.1) and the 
associated equation (A.5). The accuracy a required for the closure of a 
periodic orbit is 10 -s. 
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